515 research outputs found

    The alloy with a memory, 55-Nitinol: Its physical metallurgy, properties, and applications

    Get PDF
    A series of nickel titanium alloys (55-Nitinol), which are unique in that they possess a shape memory, are described. Components made of these materials that are altered in their shapes by deformation under proper conditions return to predetermined shapes when they are heated to the proper temperature range. The shape memory, together with the force exerted and the ability of the material to do mechanical work as it returns to its predetermined shape, suggest a wide variety of industrial applications for the alloy. Also included are discussions of the physical metallurgy and the mechanical, physical, and chemical properties of 55-Nitinol; procedures for melting and processing the material into useful shapes; and a summary of applications

    Quantum phase estimation with lossy interferometers

    Full text link
    We give a detailed discussion of optimal quantum states for optical two-mode interferometry in the presence of photon losses. We derive analytical formulae for the precision of phase estimation obtainable using quantum states of light with a definite photon number and prove that maximization of the precision is a convex optimization problem. The corresponding optimal precision, i.e. the lowest possible uncertainty, is shown to beat the standard quantum limit thus outperforming classical interferometry. Furthermore, we discuss more general inputs: states with indefinite photon number and states with photons distributed between distinguishable time bins. We prove that neither of these is helpful in improving phase estimation precision.Comment: 12 pages, 5 figure

    Enhanced charge detection of spin qubit readout via an intermediate state

    Full text link
    We employ an intermediate excited charge state of a lateral quantum dot device to increase the charge detection contrast during the qubit state readout procedure, allowing us to increase the visibility of coherent qubit oscillations. This approach amplifies the coherent oscillation magnitude but has no effect on the detector noise resulting in an increase in the signal to noise ratio. In this letter we apply this scheme to demonstrate a significant enhancement of the fringe contrast of coherent Landau-Zener-Stuckleberg oscillations between singlet S and triplet T+ two-spin states.Comment: 3 pages, 3 figure

    Composite fermions in periodic and random antidot lattices

    Get PDF
    The longitudinal and Hall magnetoresistance of random and periodic arrays of artificial scatterers, imposed on a high-mobility two-dimensional electron gas, were investigated in the vicinity of Landau level filling factor ν=1/2. In periodic arrays, commensurability effects between the period of the antidot array and the cyclotron radius of composite fermions are observed. In addition, the Hall resistance shows a deviation from the anticipated linear dependence, reminiscent of quenching around zero magnetic field. Both effects are absent for random antidot lattices. The relative amplitude of the geometric resonances for opposite signs of the effective magnetic field and its dependence on illumination illustrate enhanced soft wall effects for composite fermions

    Influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors

    Full text link
    In a recent paper [B. A. Piot et al., Phys. Rev. B 72, 245325 (2005)], we have shown that the lifting of the electron spin degeneracy in the integer quantum Hall effect at high filling factors should be interpreted as a magnetic-field-induced Stoner transition. In this work, we extend the analysis to investigate the influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors. The single-particle Zeeman energy is tuned through the application of an additional in-plane magnetic field. Both the evolution of the spin polarization of the system and the critical magnetic field for spin splitting are well described as a function of the tilt angle of the sample in the magnetic field.Comment: Published in Phys. Rev.

    Quantum Hall induced currents and the magnetoresistance of a quantum point contact

    Get PDF
    We report an investigation of quantum Hall induced currents by simultaneous measurements of their magnetic moment and their effect on the conductance of a quantum point contact (QPC). Features in the magnetic moment and QPC resistance are correlated at Landau-level filling factors nu=1, 2 and 4, which demonstrates the common origin of the effects. Temperature and non-linear sweep rate dependences are observed to be similar for the two effects. Furthermore, features in the noise of the induced currents, caused by breakdown of the quantum Hall effect, are observed to have clear correlations between the two measurements. In contrast, there is a distinct difference in the way that the induced currents decay with time when the sweeping field halts at integer filling factor. We attribute this difference to the fact that, while both effects are sensitive to the magnitude of the induced current, the QPC resistance is also sensitive to the proximity of the current to the QPC split-gate. Although it is clearly demonstrated that induced currents affect the electrostatics of a QPC, the reverse effect, the QPC influencing the induced current, was not observed

    Noise reduction in 3D noncollinear parametric amplifier

    Get PDF
    We analytically find an approximate Bloch-Messiah reduction of a noncollinear parametric amplifier pumped with a focused monochromatic beam. We consider type I phase matching. The results are obtained using a perturbative expansion and scaled to a high gain regime. They allow a straightforward maximization of the signal gain and minimization of the parametric fluorescence noise. We find the fundamental mode of the amplifier, which is an elliptic Gaussian defining the optimal seed beam shape. We conclude that the output of the amplifier should be stripped of higher order modes, which are approximately Hermite-Gaussian beams. Alternatively, the pump waist can be adjusted such that the amount of noise produced in the higher order modes is minimized.Comment: 18 pages, 9 figures, accepted to Applied Physics

    The origin of switching noise in GaAs/AlGaAs lateral gated devices

    Full text link
    We have studied the origin of switching (telegraph) noise at low temperature in lateral quantum structures defined electrostatically in GaAs/AlGaAs heterostructures by surface gates. The noise was measured by monitoring the conductance fluctuations around e2/he^2/h on the first step of a quantum point contact at around 1.2 K. Cooling with a positive bias on the gates dramatically reduces this noise, while an asymmetric bias exacerbates it. We propose a model in which the noise originates from a leakage current of electrons that tunnel through the Schottky barrier under the gate into the doped layer. The key to reducing noise is to keep this barrier opaque under experimental conditions. Bias cooling reduces the density of ionized donors, which builds in an effective negative gate voltage. A smaller negative bias is therefore needed to reach the desired operating point. This suppresses tunnelling from the gate and hence the noise. The reduction in the density of ionized donors also strengthens the barrier to tunneling at a given applied voltage. Support for the model comes from our direct observation of the leakage current into a closed quantum dot, around 1020A10^{-20} \mathrm{A} for this device. The current was detected by a neighboring quantum point contact, which showed monotonic steps in time associated with the tunneling of single electrons into the dot. If asymmetric gate voltages are applied, our model suggests that the noise will increase as a consequence of the more negative gate voltage applied to one of the gates to maintain the same device conductance. We observe exactly this behaviour in our experiments.Comment: 8 pages, 7 figure

    Single-photon emission from the natural quantum dots in the InAs/GaAs wetting layer

    Full text link
    Time-resolved microphotoluminescence study is presented for quantum dots which are formed in the InAs/GaAs wetting layer. These dots are due to fluctuations of In composition in the wetting layer. They show spectrally sharp luminescence lines with a low spatial density. We identify lines related to neutral exciton and biexciton as well as trions. Exciton emission antibunching (second order correlation value of g^2(0)=0.16) and biexciton-exciton emission cascade prove non-classical emission from the dots and confirm their potential as single photon sources

    Multiband theory of multi-exciton complexes in self-assembled quantum dots

    Full text link
    We report on a multiband microscopic theory of many-exciton complexes in self-assembled quantum dots. The single particle states are obtained by three methods: single-band effective-mass approximation, the multiband kpk\cdot p method, and the tight-binding method. The electronic structure calculations are coupled with strain calculations via Bir-Pikus Hamiltonian. The many-body wave functions of NN electrons and NN valence holes are expanded in the basis of Slater determinants. The Coulomb matrix elements are evaluated using statically screened interaction for the three different sets of single particle states and the correlated NN-exciton states are obtained by the configuration interaction method. The theory is applied to the excitonic recombination spectrum in InAs/GaAs self-assembled quantum dots. The results of the single-band effective-mass approximation are successfully compared with those obtained by using the of kpk\cdot p and tight-binding methods.Comment: 10 pages, 8 figure
    corecore